邦定机厂家
免费服务热线

Free service

hotline

010-00000000
邦定机厂家
热门搜索:
成功案例
当前位置:首页 > 成功案例

机械网闻--无机填料改性聚合物研究进展

发布时间:2021-11-15 10:16:44 阅读: 来源:邦定机厂家

 聚合物改性的最简单的方法是无机粒子的填充改性。按尺寸大小,无机粒子可分为微米粒子、纳米粒子和晶须粒子3类。无机粒子的填充改性方法不但能提高聚合物的刚度、硬度、模量、冲击韧性和热变形温度,还能降落本钱。由于聚合物复合材料的强度和韧性主要受填料粒子的粒径、形状、和基体与粒子间的界面粘结强度的影响,因此采取界面增韧剂或弹性体等与无机刚性粒子共同增强增韧PP,能有效提高材料韧性,同时使材料也具有较高的强度,终究实现PP增强与增韧。由此通过将无机粒子的超细化、纳米化和表面功能化,使填料转变成功能填料,与弹性体协同增加聚合物的强度与韧性已成为聚合物/无机填料复合材料的研究热门[8]。

1、微米粒子改性聚合物

采取微米级无机刚性粒子改进PP的韧性,可在不降落其拉伸强度和刚性的同时,还能提高材料抗冲性能和热变形温度。郑德等[9]通过对稀土偶联剂(WOT)的研究发现,WOT不但与无机刚性粒子之间有物理吸附作用,同时还产生化学作用,加强了无机粒子的增韧效果,进而使复合材料的断裂伸长率增加纯PP的2倍左右房主未签字可以强制拆迁么,缺口冲击强度到达纯PP的2倍。同时,无机刚性粒子复合填充PP比单1填料填充PP具有更高的曲折强度和冲击强度。Leong等[10]使用云母(M)、碳酸钙复合填充PP,当PP/M/CaCO3质量分数到达70/15/15时,材料具有最高的冲击强度和曲折强度。高翔等[11]通过两步法共混工艺制备了含核-壳结构特点的相包容粒子的PP/EPDM/凹凸棒土3元复合材料,与纯PP对比发现缺口冲击强度提高约5倍,屈服强度和杨氏模量分别提高25%和110%。说明无机刚性粒子加入橡胶中构成核-壳结构,核为刚性粒子,橡胶为壳,明显使PP复合材料的韧性得以提高。

2、纳米粒子改性聚合物

纳米材料与技术从20世纪90年代开始兴起,逐渐使无机填料粒子向纳米化和功能化方向发展。纳米粒子填充聚合物必须实现纳米粒子与聚合物在纳米尺度上的均匀分散,才能到达较好的增强、增韧效果。因此,采取纳米粒子改性聚合物墓地可以强拆吗,应当进行适当的表面处理,降落粒子的表面能,并增加塑化进程中粒子与基体之间的界面相互作用,提高机械剪切力,终究到达纳米粒子均匀分散的效果。

由于纳米CaCO3粒子的长径比小,当质量分数<5%时,能同时增加PP的强度和韧性,而且缺口冲击强度随纳米CaCO3用量增加而增加。章明秋等研究了不同表面改性碳酸钙纳米粒子对聚丙烯(PP)等温与非等温结晶动力学的影响,及其熔融行动和晶型。研究发现纳米碳酸钙具有明显的成核效应,并具有较强的勾引β型结晶的能力,而且与粒子的表面处理密切相干。

古菊等通过固相法,采取羟基不饱和脂肪酸,对硬脂酸改性的工业纳米碳酸钙CCR进行了表面改性制备了R-CCR,进而通过熔融共混法制备了聚丙烯(PP)/乙丙橡胶(EPDM)/纳米碳酸钙2元和3元复合材料。发现加入R-CCR后,PP复合材料的拉伸断面出现明显的大面积屈服变形和拉丝状结构,而且与PP/EPDM/CCR的冲击断面相比,PP/EPDM/R-CCR冲击断面处的空穴增加明显并细化,同时R-CCR在PP基体中分散均匀,且界面模糊,与基体的相容性明显优于CCR。力学性能测试结果表明在保持聚丙烯的模量和强度基本不变的条件下,R-CCR能大幅度改进了聚丙烯的韧性,同时保持加工性能不变,说明R-CCR对PP同时具有增韧和增强的效果,且R-CCR和EPDM对PP起到协同增韧的效果。

纳米SiO2粒径通常为20~60nm,由硅或有机硅的氯化物高温水解生成,其表面带有羟基的超细粉体,化学纯度高,分散性好。纳米SiO2的效应,如小尺寸效应与宏观量子隧道效应大幅度提高了聚合物材料的弹性、耐水性、耐磨性、光稳定性及表面糙度等性能。由此,对纳米SiO2/聚合物复合材料的研究与利用遭到普遍关注。

周红军等利用反应性增容技术制备了纳米2氧化硅/聚丙烯复合材料,改性粒子上的环氧基与氨基化聚丙烯上的氨基之间产生化学反应,从而大大增强了复合材料的界面作用,即使在粒子含量很低时对聚丙烯的拉伸强度、模量和冲击强度的提高也较明显。容敏智与周红军研究了表面接枝改性纳米SiO2及增容剂对聚丙烯(PP)结晶进程、等温与非等温结晶动力学的影响,由于纳米SiO2的异相成核作用,使PP的结晶总速率增大,结晶峰温升高;表面处理有效地改进了粒子与基体的亲和性,提高了粒子的成核效应,增容剂马来酸酐接枝聚丙烯(PP-g-MAH)有益于纳米SiO2的成核活性的提高;添加纳米SiO2降落了复合材料结晶的有效能垒,PP-g-MAH增大了复合材料的结晶有效能垒,但不高于纯PP的结晶有效能垒。

吴唯等用自制的分散剂对纳米SiO2进行表面处理后,再利用双螺杆挤出机使聚丙烯、3元乙丙胶熔融共混,制备出PP/纳米SiO2/EPDM纳米复合材料,研究表明冲击强度到达最大值时,纳米SiO2掺量为2%~3%。主要是纳米SiO2有效提高PP的结晶温度与结晶速度的同时,还使球晶细化,致使纳米SiO2刚性微粒在PP连续相中成微粒团圆体形态,并与PP基体表现出较强的结合强度。构成微粒团圆体的平均微粒数约为6~7。

纳米TiO2粒子可作为高聚物的光屏蔽剂提高基体的抗光老化性,主要由于其独有的半导体结构,使其能够吸收并反射太阳光,而且纳米TiO2粒子在吸收太阳光后,会产生光催化化学反应,进而产生强氧化性的基团使矿物杂质氧化,因此纳米TiO2可作为抗菌剂使用。纳米TiO2的加入可提高PP结晶度,细化PP晶粒,同时均匀分散的纳米TiO2粒子能显著增加裂纹扩大阻力。季光明等用共混方法,制备了经钛酸酯偶联剂NDZ⑵01处理的PP/TiO2纳米复合材料,发现纳米TiO2的加入使复合材料的力学性能指标得到了明显提高,如抗弯强度、抗弯模量及冲击强度。但当其掺量超过5%时,力学性能增长趋势缓慢,并且随纳米TiO2粒子掺量继续增加,力学性能显现降落趋势;在纳米TiO2加入量1定的情况下,NDZ⑵01质量分数为2%时,对PP的增强增韧效果最为显著。高俊刚等[22]研究了PP/TiO2纳米复合材料的流变行动和力学性能,发现纳米TiO2的增韧效果优于普通TiO2。纳米TiO2与PP构成的物理3维网络起到应力集中作用,导致粒子周围的PP产生大的塑性变形和银纹效应而提高冲击韧性。但纳米TiO2添加量超过4%时,粒子分散性不好,容易构成团圆,导致PP/TiO2纳米复合材料冲击强度大幅度降落。